We Offer Fermented Products 25% Off.​

Hop Extract


18 guests are viewing this product

Xanthohumol is a flavonoid derived from the hops plant commonly used to brew beer. In clinical and pre-clinical studies, xanthohumol has been shown to help protect DNA from damage, a major part of maintaining healthy cellular function and cell division.1-4
Food Technol Biotechnol. 2016 Mar;54(1):60-69.
Mol Nutr Food Res. 2016 Apr;60(4):773-86.
Cancer Prev Res (Phila). 2017 Feb;10(2):153-160.
Dietz BM, Kang YH, Liu G et al. Xanthohumol isolated from Humulus lupulus Inhibits menadione-induced DNA damage through induction of quinone reductase. Chem Res Toxicol 2005;18 (8) : 1296-305

  • Clear
We also prodvide 44 lbs. To get price call us.
SKU: N/A Category:

Hops May Improve Heart Health*

In a study on 23 people (DB-RCT), the intake of hops isohumulones improved blood flow, both in smokers and non-smokers [50].

In two studies in mice, xanthohumol prevented and reversed the buildup of triglyceride and cholesterol plaques inside the arteries [5152].

In rats, hops extract relaxed blood vessels, which may reduce the risk of heart disease [53].

After injuries, vessels can be narrowed from blood vessel cell growth and lead to heart disease. Xanthohumol was able to mitigate these effects [5455].

Because xanthohumol inhibits platelet activity, it may reduce the risk of blood clot formation (thrombosis) [56].

Hops Help Blood Sugar Balance*

In a study of 20 diabetic people (DB-RCT), the intake of hops isohumulones reduced blood sugar levels [57].

In multiple studies with mice and rats, the intake of hops extract, its components xanthohumol and isohumulones, or a mixture of hops isohumulones and acacia proanthocyanidins reduced blood sugar levels and insulin resistance [313233575835].

Hops Have Anticancer Activity (cells)*

The hops component xanthohumol reduced cell growth, survival, or migration in the following human cancer cell types:

Hops May Possibly Help with Neurodegenerative Diseases (animals)*

Hops extract reduced brain damage and maintained brain function in rats with stroke or poisoned with aluminum nitrate. The long-term intake of hops extract reduced the buildup of a protein believed to cause Alzheimer’s disease (β-amyloid) in the brain of old mice and preserved their cognitive functions [105106107].

Xanthohumol protected brain cells against inflammation and oxidative damage, suggesting its therapeutic potential in neurodegenerative diseases [108109].

Because xanthohumol (among other flavonoids) can block an enzyme involved in the onset of Alzheimer’s disease (BACE1), it was suggested as a preventive therapeutic candidate for this disease [110].

Hops May Prevent Liver Damage (animals)*

In several mice studies, hops or its components xanthohumol and isohumulones had protective effects against the following liver disorders:

  • Alcoholic fatty liver disease [115116]
  • Non-alcoholic fatty liver disease [117118]
  • Oxidative damage, inflammation, and cell death associated with aging [119]
  • Tissue scarring in response to liver damage [117]
  • Xanthohumol, humulones, and lupulones prevented the inflammatory process in liver cells and the activation process of those causing tissue scarring in response to liver damage [117118120].

Hops and Digestive Function (animals)*

  • In rats, hops intake increased stomach juice production without changing its acid level. In another study, intake of hops extract reduced thin bowel movements [121122].
  • In a study in pigs, the supplementation of the diet with hops (or a grape product also rich in polyphenols) increased weight gain per feed intake. The new diet did not change gut morphology or feed digestibility, but changed the gut microbial composition and reduced the production of pro-inflammatory proteins [123].

Hops and Thyroid Function*

  • In a study in thyroid-derived cells, xanthohumol improved iodide uptake, which is an essential step in the production of the thyroid hormone. In another study, xanthohumol increased TSH and activity of the enzyme that converts T4 to T3 (type 1 deiodinase) [124125].
  • However, the dosages in these studies were much higher than what humans would take.

Pain and Inflammation*

  • A combination of hops isohumulones, rosemary extract, and oleanolic acid reduced the pain caused by arthritis and fibromyalgia in a pilot study on 54 people [126].


Potential Anticancer Mechanisms

Based on mechanistic studies, Hops extract and one of its main compounds xanthohumol may reduce cancer risk by preventing cancer-causing substances from damaging DNA [143144145].

Xanthohumol also kills cancer cells by blocking proteins that promote cell survival, such as:

Other mechanisms by which xanthohumol causes cancer cell death include:

  • Increased superoxide production [148]
  • Activation of unfolded protein response [149]
  • Reduced nitric oxide production [150]
  • Reduced production of cytokines (MCP-1 and TNFα ) [151]
  • Activation of programmed cell death [152153154] and cancer cell autophagy [155]
  • Increased production of proteins that block cell growth and division (p21 and p53) [156]

Xanthohumol also prevents the formation of new blood vessels in tumors by blocking growth pathways (NF-κB and Akt) [157].

Xanthohumol may reduce the production of proteins that promote resistance to radiation and chemotherapy (EGFR, STAT3, and MDR1) [158159].

Finally, xanthohumol reduces the ability of cancer cells to invade other tissues by:

  • Blocking prostaglandin production [160]
  • Reducing the production of a protein that allows cancer cells to migrate outside the tumor (MMP-9) [146]
  • Stimulating an anti-invasive protein complex (E-cadherin/catenin) [90]
  • Reducing the production of chemokine receptors (CXCR4) [161] and cell attachment proteins (ICAM-1) [162]

These anticancer effects have been studied in cells and animals at high dosages, but often this doesn’t translate to benefits in humans, especially at normal dosages.

Antioxidant Mechanisms*

Reactive oxygen species are formed through chemical reactions in the body and cause oxidative damage to DNA, proteins, and fatty molecules. Plant flavonoids prevent the oxidative damage of reactive oxygen species by [163164]:

  • Breaking them down
  • Blocking the enzymes that produce them
  • Retaining the minerals required for their production

Xanthohumol and other hops flavonoids activate the following antioxidant proteins:

Hops compounds, especially xanthohumol, have proven antioxidant effects in the liver, brain, heart, kidneys, lungs, and blood vessels [16816950170].

Other hops flavonoids, especially myricetin, have antioxidant effects in white blood cells(lymphocytes) [171].

Anti-Inflammatory Mechanisms*

Both hops extract and xanthohumol have several proven anti-inflammatory effects, including:


Fat/Cholesterol-Lowering Mechanisms*

Xanthohumol blocks a key enzyme in triglyceride production (diacylglycerol acyltransferase) and the protein that binds newly formed triglycerides to lipoproteins (MTP). This results in a decreased release of the lipoprotein that transports triglycerides through blood (apolipoprotein B) [178179180181].

Xanthohumol also reduces cholesterol buildup inside the arteries by preventing damage to LDL and blocking the protein that transports this fatty molecule from HDL to LDL (cholesteryl ester transfer protein) [182183184].

Xanthohumol reduces the development and stimulates the death of fatty cells by reducing PPAR-gamma levels in fat cells, which lowers total body fat accumulation. In turn, isohumulones reduce blood triglyceride levels by activating PPARα. In the liver, xanthohumol prevents triglyceride buildup by binding to the farnesoid X receptor (FXR), which decreases the levels of an enzyme that promotes fat production and fatty cell development (SRBEP1c) [375760185].

Sugar-Lowering Mechanisms*

The simultaneous activation of PPAR-alpha and PPAR-gamma by isohumulones lowers blood sugar levels by reducing insulin resistance. Hops bitter acids also activate the bitter taste receptors and stimulate the production of GLP-1, a protein that triggers insulin production in response to sugar [5759].

Xanthohumol lowers blood sugar levels by:

  • Binding to the farnesoid X receptor [6061]
  • Blocking sugar uptake [62]
  • Blocking an enzyme that produces sugar from complex carbohydrates (α-glycosidase) [63]

While some hops flavonoids (e.g., quercetin) also reduce sugar uptake, others (e.g., catechin) increase it. The hops flavonoids catechin, epicatechin, quercetin, and rutin also lower blood sugar levels by stimulating the growth of the cells that produce insulin (β-cells) [6264+].

FDA Compliance

*The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication, or have a medical condition.


100 gms, 1 lb

Supplement Facts

Serving Size 1/4 gram
Amount Per Serving

Xanthohumol Hop Extract 98% (Humulus lupulus) (hop cones) 245 mg

Other ingredients: None


Dosage and Use

  • Take 1/4 gram daily, before lunch and dinner, or as recommended by a healthcare practitioner.


  • Do not purchase if outer seal is broken or damaged.
  • When using nutritional supplements, please consult with your physician if you are undergoing treatment for a medical condition or if you are pregnant or lactating.

*These statements have not been evaluated by the FDA and are not intended to diagnose, treat, cure or prevent any disease or health condition.


  1. Arczewska M., Kaminski D. M., Gorecka E., Pociecha D., Roj E., Slawinska-Brych A., et al. (2013). The molecular organization of prenylated flavonoid xanthohumol in DPPC multibilayers: X-ray diffraction and FTIR spectroscopic studies. 1828 213–222. 10.1016/j.bbamem.2012.10.009 [PubMed]
  2. Avula B., Ganzera M., Warnick J. E., Feltenstein M. W., Sufka K. J., Khan I. A. (2004). High-performance liquid chromatographic determination of xanthohumol in rat plasma, urine, and fecal samples. 42 378–382. 10.1093/chromsci/42.7.378 [PubMed]
  3. Basak P., Sadhukhan P., Sarkar P., Sil P. C. (2017). Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy. 4 306–318. 10.1016/j.toxrep.2017.06.002 ][PubMed
  4. Bassey-Archibong B. I., Kwiecien J. M., Milosavljevic S. B., Hallett R. M., Rayner L. G., Erb M. J., et al. (2016). Kaiso depletion attenuates transforming growth factor-beta signaling and metastatic activity of triple-negative breast cancer cells. 5:e208. 10.1038/oncsis.2016.17 [PubMed
  5. Benelli R., Vene R., Ciarlo M., Carlone S., Barbieri O., Ferrari N. (2012). The AKT/NF-kappaB inhibitor xanthohumol is a potent anti-lymphocytic leukemia drug overcoming chemoresistance and cell infiltration. 83 1634–1642. 10.1016/j.bcp.2012.03.006 [PubMed]
  6. Cao J., Zhu X., Zhao X., Li X. F., Xu R. (2016). Neutrophil-to-lymphocyte ratio predicts PSA response and prognosis in prostate cancer: a systematic review and meta-analysis. 11:e0158770. 10.1371/journal.pone.0158770 [PubMed]
  7. Chen L., Qiu Y., Hao Z., Cai J., Zhang S., Liu Y., et al. (2017). A novel humanized anti-tumor necrosis factor-related apoptosis-inducing ligand-R2 monoclonal antibody induces apoptotic and autophagic cell death. 69 735–744. 10.1002/iub.1659 [PubMed]
  8. Chen P. H., Chang C. K., Shih C. M., Cheng C. H., Lin C. W., Lee C. C., et al. (2016). The miR-204-3p-targeted IGFBP2 pathway is involved in xanthohumol-induced glioma cell apoptotic death. 110362–375. 10.1016/j.neuropharm.2016.07.038 [PubMed]
  9. Chen Q., Wang L., Ma Y., Wu X., Jin L., Yu F. (2014). Increased hepcidin expression in non-small cell lung cancer tissue and serum is associated with clinical stage. 5 14–24. 10.1111/1759-7714.12046  [PubMed]
  10. Chen Q. H., Fu M. L., Chen M. M., Liu J., Liu X. J., He G. Q., et al. (2012). Preparative isolation and purification of xanthohumol from hops (Humulus lupulus L.) by high-speed counter-current chromatography. 132 619–623. 10.1016/j.foodchem.2011.10.098 [PubMed]
  11. Colgate E. C., Miranda C. L., Stevens J. F., Bray T. M., Ho E. (2007). Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. 246 201–209. 10.1016/j.canlet.2006.02.015 [PubMed]
  12. Cook M. R., Luo J., Ndiaye M., Chen H., Kunnimalaiyaan M. (2010). Xanthohumol inhibits the neuroendocrine transcription factor achaete-scute complex-like 1, suppresses proliferation, and induces phosphorylated ERK1/2 in medullary thyroid cancer. 199 315–318; discussion 318. 10.1016/j.amjsurg.2009.08.034  [PubMed]
  13. Cosetti M., Yu G. P., Schantz S. P. (2008). Five-year survival rates and time trends of laryngeal cancer in the US population. 134 370–379. 10.1001/archotol.134.4.370 [PubMed]
  14. Cuvertino S., Filiciotto G., Masurekar A., Saha V., Lacaud G., Kouskoff V. (2017). SOX7 promotes the maintenance and proliferation of B cell precursor acute lymphoblastic cells. 8 64974–64983. 10.18632/oncotarget.10472  [PubMed]
  15. D’Cruz A. K., Vaish R., Vaidya A., Nixon I. J., Williams M. D., Vander Poorten V., et al. (2018). Molecular markers in well-differentiated thyroid cancer. 10.1007/s00405-018-4944-1 [Epub ahead of print]. [PubMed]
  16. Deeb D., Gao X., Jiang H., Arbab A. S., Dulchavsky S. A., Gautam S. C. (2010). Growth inhibitory and apoptosis-inducing effects of xanthohumol, a prenylated chalone present in hops, in human prostate cancer cells. 30 3333–3339.  [PubMed
  17. Dokduang H., Yongvanit P., Namwat N., Pairojkul C., Sangkhamanon S., Yageta M. S., et al. (2016). Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells. 35 2065–2072. 10.3892/or.2016.4584 [PubMed]
  18. Dorn C., Weiss T. S., Heilmann J., Hellerbrand C. (2010). Xanthohumol, a prenylated chalcone derived from hops, inhibits proliferation, migration and interleukin-8 expression of hepatocellular carcinoma cells. 36 435–441. 10.1055/s-0029-1246396 [PubMed]
  19. Dostalek P., Karabin M., Jelinek L. (2017). Hop phytochemicals and their potential role in metabolic syndrome prevention and therapy. 22:E1761. 10.3390/molecules22101761 [PubMed]
  20. Drenzek J. G., Seiler N. L., Jaskula-Sztul R., Rausch M. M., Rose S. L. (2011). Xanthohumol decreases Notch1 expression and cell growth by cell cycle arrest and induction of apoptosis in epithelial ovarian cancer cell lines. 122 396–401. 10.1016/j.ygyno.2011.04.027 [PubMed]
  21. Dresel M., Dunkel A., Hofmann T. (2015). Sensomics analysis of key bitter compounds in the hard resin of hops (Humulus lupulus L.) and their contribution to the bitter profile of Pilsner-type beer. 633402–3418. 10.1021/acs.jafc.5b00239 [PubMed]
  22. Du G. J., Zhang Z., Wen X. D., Yu C., Calway T., Yuan C. S., et al. (2012). Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. 4 1679–1691. 10.3390/nu4111679 [PubMed]
  23. Ellinwood D. C., El-Mansy M. F., Plagmann L. S., Stevens J. F., Maier C. S., Gombart A. F., et al. (2017). Total synthesis of [13 C]2 -, [13 C]3 -, and [13 C]5 -isotopomers of xanthohumol, the principal prenylflavonoid from hops. 60 639–648. 10.1002/jlcr.3571[PubMed]
  24. Festa M., Capasso A., D’acunto C. W., Masullo M., Rossi A. G., Pizza C., et al. (2011). Xanthohumol induces apoptosis in human malignant glioblastoma cells by increasing reactive oxygen species and activating MAPK pathways. 74 2505–2513. 10.1021/np200390x [PubMed]
  25. Fu Y., Li S., Zu Y., Yang G., Yang Z., Luo M., et al. (2009). Medicinal chemistry of paclitaxel and its analogues. 16 3966–3985. 10.2174/092986709789352277 [PubMed]
  26. Gokduman K. (2016). Strategies targeting DNA topoisomerase I in cancer chemotherapy: camptothecins, nanocarriers for camptothecins, organic non-camptothecin compounds and metal complexes. 17 1928–1939. 10.2174/1389450117666160502151707 [PubMed]
  27. Gueritte F. (2001). General and recent aspects of the chemistry and structure-activity relationships of taxoids. 7 1229–1249. 10.2174/1381612013397429 [PubMed]
  28. Guerreiro S., Monteiro R., Martins M. J., Calhau C., Azevedo I., Soares R. (2007). Distinct modulation of alkaline phosphatase isoenzymes by 17beta-estradiol and xanthohumol in breast cancer MCF-7 cells. 40 268–273. 10.1016/j.clinbiochem.2006.09.012 [PubMed]
  29. Gulei D., Mehterov N., Nabavi S. M., Atanasov A. G., Berindan-Neagoe I. (2017). Targeting ncRNAs by plant secondary metabolites: the ncRNAs game in the balance towards malignancy inhibition. 10.1016/j.biotechadv.2017.11.003 [Epub ahead of print]. [PubMed]
  30. Harikumar K. B., Kunnumakkara A. B., Ahn K. S., Anand P., Krishnan S., Guha S., et al. (2009). Modification of the cysteine residues in IkappaBalpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cells. 113 2003–2013. 10.1182/blood-2008-04-151944  [PubMed]
  31. Hearing V. J., Jimenez M. (1987). Mammalian tyrosinase–the critical regulatory control point in melanocyte pigmentation. 19 1141–1147. 10.1016/0020-711X(87)90095-4 [PubMed]
  32. Ho Y. C., Liu C. H., Chen C. N., Duan K. J., Lin M. T. (2008). Inhibitory effects of xanthohumol from hops (Humulus lupulus L.) on human hepatocellular carcinoma cell lines. 22 1465–1468. 10.1002/ptr.2481 [PubMed]
  33. Hussong R., Frank N., Knauft J., Ittrich C., Owen R., Becker H., et al. (2005). A safety study of oral xanthohumol administration and its influence on fertility in Sprague Dawley rats. 49 861–867. 10.1002/mnfr.200500089 [PubMed]
  34. Jiang W., Zhao S., Xu L., Lu Y., Lu Z., Chen C., et al. (2015). The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer. 73 40–47. 10.1016/j.biopha.2015.05.020 [PubMed]
  35. Jitariu A. A., Cimpean A. M., Ribatti D., Raica M. (2017). Triple negative breast cancer: the kiss of death. 8 46652–46662. 10.18632/oncotarget.16938  [PubMed]
  36. Kang Y., Park M. A., Heo S. W., Park S. Y., Kang K. W., Park P. H., et al. (2013). The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells. 1830 2638–2648. 10.1016/j.bbagen.2012.12.005 [PubMed]
  37. Kelloff G. J., Boone C. W., Crowell J. A., Steele V. E., Lubet R., Sigman C. C. (1994). Chemopreventive drug development: perspectives and progress. 3 85–98. [PubMed]
  38. Khupse R. S., Erhardt P. W. (2007). Total synthesis of xanthohumol. 70 1507–1509. 10.1021/np070158y [PubMed]
  39. Kim S. Y., Lee I. S., Moon A. (2013). 2-Hydroxychalcone and xanthohumol inhibit invasion of triple negative breast cancer cells. 203 565–572. 10.1016/j.cbi.2013.03.012 [PubMed]
  40. Klosek M., Mertas A., Krol W., Jaworska D., Szymszal J., Szliszka E. (2016). Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in prostate cancer cells after treatment with xanthohumol-A natural compound present in Humulus lupulus L. 17:E837. 10.3390/ijms17060837 [PubMed]
  41. Koo J. H., Kim H. T., Yoon H. Y., Kwon K. B., Choi I. W., Jung S. H., et al. (2008). Effect of xanthohumol on melanogenesis in B16 melanoma cells. 40 313–319. 10.3858/emm.2008.40.3.313 [PubMed]
  42. Kunnimalaiyaan S., Sokolowski K. M., Balamurugan M., Gamblin T. C., Kunnimalaiyaan M. (2015a). Xanthohumol inhibits Notch signaling and induces apoptosis in hepatocellular carcinoma.10:e0127464. 10.1371/journal.pone.0127464  [PubMed]
  43. Kunnimalaiyaan S., Trevino J., Tsai S., Gamblin T. C., Kunnimalaiyaan M. (2015b). Xanthohumol-mediated suppression of Notch1 signaling is associated with antitumor activity in human pancreatic cancer cells. 14 1395–1403. 10.1158/1535-7163.MCT-14-0915  [PubMed]
  44. Kuribayashi K., Funaguchi N., Nakano T. (2016). Chemotherapy for advanced non-small cell lung cancer with a focus on squamous cell carcinoma. 12 528–534. 10.4103/0973-1482.174185 [PubMed]
  45. LeComte M. D., Spees J. L. (2016). Notch1-STAT3-ETBR signaling in brain injury and cancer. 8064–65. 10.1016/j.cyto.2015.08.259  [PubMed]
  46. Lee E. S., Ko K. K., Joe Y. A., Kang S. G., Hong Y. K. (2011). Inhibition of STAT3 reverses drug resistance acquired in temozolomide-resistant human glioma cells. 2 115–121. 10.3892/ol.2010.210 [PubMed]
  47. Lee S. H., Kim H. J., Lee J. S., Lee I. S., Kang B. Y. (2007). Inhibition of topoisomerase i activity and efflux drug transporters’ expression by xanthohumol. from hops. 30 1435–1439. [PubMed
  48. Li Y., Wang K., Yin S., Zheng H., Min D. (2016). Xanthohumol inhibits proliferation of laryngeal squamous cell carcinoma. 12 5289–5294. 10.3892/ol.2016.5313  [PubMed]
  49. Liu B. L., Zhang X., Zhang W., Zhen H. N. (2007). New enlightenment of French Paradox: resveratrol’s potential for cancer chemoprevention and anti-cancer therapy. 6 1833–1836. 10.4161/cbt.6.12.5161 [PubMed]
  50. Liu M., Hansen P. E., Wang G., Qiu L., Dong J., Yin H., et al. (2015). Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). 20 754–779. 10.3390/molecules20010754 [PubMed]
  51. Liu M., Yin H., Qian X., Dong J., Qian Z., Miao J. (2016). Xanthohumol, a prenylated chalcone from hops, inhibits the viability and stemness of doxorubicin-resistant MCF-7/ADR Cells. 22:E36. 10.3390/molecules22010036 [PubMed]
  52. Liu T., Li Z., Zhang Q., De Amorim Bernstein K., Lozano-Calderon S., Choy E., et al. (2016). Targeting ABCB1 (MDR1) in multi-drug resistant osteosarcoma cells using the CRISPR-Cas9 system to reverse drug resistance. 7 83502–83513. 10.18632/oncotarget.13148 [PubMed]
  53. Magalhães P. J., Dostalek P., Cruz J. M., Guido L. F., Barros A.A. (2008). The impact of a xanthohumol-enriched hop product on the behavior of xanthohumol and isoxanthohumol in pale and dark beers: a pilot scale approach. 114 246–256. 10.1002/j.2050-0416.2008.tb00335.x [CrossRef
  54. Marquina G., Manzano A., Casado A. (2018). Targeted agents in cervical cancer: beyond bevacizumab. 20:40. 10.1007/s11912-018-0680-3 [PubMed]
  55. McAdam E. L., Freeman J. S., Whittock S. P., Buck E. J., Jakse J., Cerenak A., et al. (2013). Quantitative trait loci in hop (Humulus lupulus L.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry. 14:360. 10.1186/1471-2164-14-360 [PubMed]
  56. Miranda C. L., Stevens J. F., Helmrich A., Henderson M. C., Rodriguez R. J., Yang Y. H., et al. (1999). Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. 37 271–285. 10.1016/S0278-6915(99)00019-8 [PubMed] [CrossRef
  57. Monteghirfo S., Tosetti F., Ambrosini C., Stigliani S., Pozzi S., Frassoni F., et al. (2008). Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-kappaB and p53 modulation. 7 2692–2702. 10.1158/1535-7163.MCT-08-0132 [PubMed] [CrossRef
  58. Monteiro R., Calhau C., Silva A. O., Pinheiro-Silva S., Guerreiro S., Gartner F., et al. (2008). Xanthohumol inhibits inflammatory factor production and angiogenesis in breast cancer xenografts.104 1699–1707. 10.1002/jcb.21738 [PubMed] [CrossRef
  59. Musella A., Bardhi E., Marchetti C., Vertechy L., Santangelo G., Sassu C., et al. (2018). Rucaparib: an emerging parp inhibitor for treatment of recurrent ovarian cancer. 66 7–14. 10.1016/j.ctrv.2018.03.004 [PubMed] [CrossRef
  60. Nikolic D., van Breemen R. B. (2013). Analytical methods for quantitation of prenylated flavonoids from hops. 9 71–85. 10.2174/157341113804486554  [PubMed] [CrossRef
  61. Nookandeh A., Frank N., Steiner F., Ellinger R., Schneider B., Gerhauser C., et al. (2004). Xanthohumol metabolites in faeces of rats. 65 561–570. 10.1016/j.phytochem.2003.11.016 [PubMed] [CrossRef]
  62. Ouban A. (2018). Claudin-1 role in colon cancer: an update and a review. 10.14670/HH-11-980 [Epub ahead of print]. [PubMed] [CrossRef]
  63. Ouyang G., Liu Z., Huang S., Li Q., Xiong L., Miao X., et al. (2016). Gemcitabine plus cisplatin versus gemcitabine alone in the treatment of pancreatic cancer: a meta-analysis. 14:59. 10.1186/s12957-016-0813-9  [PubMed] [CrossRef
  64. Pan J., Shen J., Si W., Du C., Chen D., Xu L., et al. (2017). Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway.8 65743–65758. 10.18632/oncotarget.19445  [PubMed] [CrossRef
  65. Pan L., Becker H., Gerhäuser C. (2005). Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. 49 837–843. 10.1002/mnfr.200500065 [PubMed] [CrossRef
  66. Pang Y., Nikolic D., Zhu D., Chadwick L. R., Pauli G. F., Farnsworth N. R., et al. (2007). Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells. 51 872–879. 10.1002/mnfr.200600252 [PubMed] [CrossRef
  67. Plazar J., Zegura B., Lah T. T., Filipic M. (2007). Protective effects of xanthohumol against the genotoxicity of benzo(a)pyrene (BaP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and tert-butyl hydroperoxide (t-BOOH) in HepG2 human hepatoma cells. 632 1–8. 10.1016/j.mrgentox.2007.03.013 [PubMed] [CrossRef
  68. Radovic B., Schmutzler C., Kohrle J. (2005). Xanthohumol stimulates iodide uptake in rat thyroid-derived FRTL-5 cells. 49 832–836. 10.1002/mnfr.200500053 [PubMed] [CrossRef
  69. Reitman Z. J., Winkler F., Elia A. E. H. (2018). New directions in the treatment of glioblastoma. 3850–61. 10.1055/s-0038-1623534 [PubMed] [CrossRef
  70. Rizvi S., Gores G. J. (2013). Pathogenesis, diagnosis, and management of cholangiocarcinoma. 1451215–1229. 10.1053/j.gastro.2013.10.013  [PubMed] [CrossRef
  71. Rodriguez-Casado A. (2016). The health potential of fruits and vegetables phytochemicals: notable examples. 56 1097–1107. 10.1080/10408398.2012.755149 [PubMed] [CrossRef
  72. Rossi T., Gallo C., Bassani B., Canali S., Albini A., Bruno A. (2014). Drink your prevention: beverages with cancer preventive phytochemicals. 124 713–722. 10.20452/pamw.2560 [PubMed] [CrossRef
  73. Schramm L. (2013). Going green: the role of the green tea component EGCG in chemoprevention.4:1000142. 10.4172/2157-2518.1000142 [PMC free article] [PubMed] [CrossRef]
  74. Siegel R. L., Miller K. D., Jemal A. (2017). Cancer statistics, 2017. 67 7–30. 10.3322/caac.21387 [PubMed] [CrossRef] ]
  75. Singh P. K., Silakari O. (2017). Chemotherapeutics-resistance ”arms” race: an update on mechanisms involved in resistance limiting EGFR inhibitors in lung cancer. 186 25–32. 10.1016/j.lfs.2017.08.001 [PubMed] [CrossRef
  76. Slawinska-Brych A., Krol S. K., Dmoszynska-Graniczka M., Zdzisinska B., Stepulak A., Gagos M. (2015). Xanthohumol inhibits cell cycle progression and proliferation of larynx cancer cells in vitro.240 110–118. 10.1016/j.cbi.2015.08.008 [PubMed] [CrossRef
  77. Slawinska-Brych A., Zdzisinska B., Dmoszynska-Graniczka M., Jeleniewicz W., Kurzepa J., Gagos M., et al. (2016). Xanthohumol inhibits the extracellular signal regulated kinase (ERK) signalling pathway and suppresses cell growth of lung adenocarcinoma cells. 357–358, 65–73. 10.1016/j.tox.2016.06.008 [PubMed] [CrossRef
  78. Sporn M. B., Suh N. (2002). Chemoprevention: an essential approach to controlling cancer. 2 537–543. 10.1038/nrc844 [PubMed] [CrossRef
  79. Stevens J. F., Taylor A. W., Deinzer M. L. (1999). Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. 832 97–107. 10.1016/S0021-9673(98)01001-2 [PubMed] [CrossRef
  80. Thein H. H., Qiao Y., Zaheen A., Jembere N., Sapisochin G., Chan K. K. W., et al. (2017). Cost-effectiveness analysis of treatment with non-curative or palliative intent for hepatocellular carcinoma in the real-world setting. 12:e0185198. 10.1371/journal.pone.0185198  [PubMed] [CrossRef
  81. Vakana E., Platanias L. C. (2011). AMPK in BCR-ABL expressing leukemias. Regulatory effects and therapeutic implications. 2 1322–1328.  [PubMed
  82. Vanhoecke B. W., Delporte F., Van Braeckel E., Heyerick A., Depypere H. T., Nuytinck M., et al. (2005). A safety study of oral tangeretin and xanthohumol administration to laboratory mice. 19103–107. [PubMed
  83. Vene R., Benelli R., Minghelli S., Astigiano S., Tosetti F., Ferrari N. (2012). Xanthohumol impairs human prostate cancer cell growth and invasion and diminishes the incidence and progression of advanced tumors in TRAMP mice. 18 1292–1302. 10.2119/molmed.2012.00174 [PubMed] [CrossRef]
  84. Venturelli S., Burkard M., Biendl M., Lauer U. M., Frank J., Busch C. (2016). Prenylated chalcones and flavonoids for the prevention and treatment of cancer. 32 1171–1178. 10.1016/j.nut.2016.03.020 [PubMed] [CrossRef]
  85. Verzele M., Stockx J., Fontijn F., Anteunis M. (1957). Xanthohumol, a new natural chalkone. 66452–475. 10.1002/bscb.19570660137 [CrossRef
  86. Wada N., Fujisaki M., Ishii S., Ikeda T., Kitajima M. (2001). Evaluation of bone metabolic markers in breast cancer with bone metastasis. 8 131–137. 10.1007/BF02967492 [PubMed] [CrossRef
  87. Wang Y., Yi J., He J., Chen G., Li L., Yang Y., et al. (2014). Cognitive emotion regulation strategies as predictors of depressive symptoms in women newly diagnosed with breast cancer. 23 93–99. 10.1002/pon.3376 [PubMed] [CrossRef
  88. Wangyang Z., Daolin J., Yi X., Zhenglong L., Lining H., Yunfu C., et al. (2018). NcRNAs and cholangiocarcinoma. 9 100–107. 10.7150/jca.21785  [PubMed] [CrossRef
  89. Weidle U. H., Birzele F., Kollmorgen G., Rueger R. (2016). Mechanisms and targets involved in dissemination of ovarian cancer. 13 407–423. 10.21873/cgp.20004 [PMC free article] [PubMed] [CrossRef
  90. Wesolowska O., Gasiorowska J., Petrus J., Czarnik-Matusewicz B., Michalak K. (2014). Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. 1838 173–184. 10.1016/j.bbamem.2013.09.009 [PubMed] [CrossRef
  91. Wu J. C., Lai C. S., Tsai M. L., Ho C. T., Wang Y. J., Pan M. H. (2017). Chemopreventive effect of natural dietary compounds on xenobiotic-induced toxicity. 25 176–186. 10.1016/j.jfda.2016.10.019 [PubMed] [CrossRef
  92. Xie C., Lu Z., Liu G., Fang Y., Liu J., Huang Z., et al. (2015). Numb downregulation suppresses cell growth and is associated with a poor prognosis of human hepatocellular carcinoma. 36 653–660. 10.3892/ijmm.2015.2279  [PubMed] [CrossRef
  93. Yang X., Lin D. (2016). Changes of 2015 WHO histological classification of lung cancer and the clinical significance. 19 332–336. 10.3779/j.issn.1009-3419.2016.06.06[PubMed] [CrossRef
  94. Yong W. K., Abd Malek S. N. (2015). Xanthohumol induces growth inhibition and apoptosis in ca ski human cervical cancer cells. 2015:921306. 10.1155/2015/921306  [PubMed] [CrossRef
  95. Yong W. K., Ho Y. F., Malek S. N. (2015). Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. 11 S275–S283. 10.4103/0973-1296.166069 [PubMed] [CrossRef
  96. Yoo Y. B., Park K. S., Kim J. B., Kang H. J., Yang J. H., Lee E. K., et al. (2014). Xanthohumol inhibits cellular proliferation in a breast cancer cell line (MDA-MB231) through an intrinsic mitochondrial-dependent pathway. 51 518–523. 10.4103/0019-509X.175328 [PubMed] [CrossRef
  97. Zanoli P., Zavatti M. (2008). Pharmacognostic and pharmacological profile of Humulus lupulus L.116 383–396. 10.1016/j.jep.2008.01.011 [PubMed] [CrossRef
  98. Zhang B., Chu W., Wei P., Liu Y., Wei T. (2015). Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. 89 486–497. 10.1016/j.freeradbiomed.2015.09.021 [PubMed] [CrossRef
  99. Zhang P., Li H., Yang B., Yang F., Zhang L. L., Kong Q. Y., et al. (2014). Biological significance and therapeutic implication of resveratrol-inhibited Wnt, Notch and STAT3 signaling in cervical cancer cells. 5 154–164.  [PubMed
  100. Zhao H., Xie P., Li X., Zhu W., Sun X., Sun X., et al. (2015). A prospective phase II trial of EGCG in treatment of acute radiation-induced esophagitis for stage III lung cancer. 114 351–356. 10.1016/j.radonc.2015.02.014 [PubMed] [CrossRef
  101. Zhao H., Zhu W., Jia L., Sun X., Chen G., Zhao X., et al. (2016). Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy.89:20150665. 10.1259/bjr.20150665  [PubMed] [CrossRef]  



Reviews (0)

There are no reviews yet.

Your email address will not be published. Required fields are marked *


Empty Cart
No products in the cart.
Please, add some products to checkout.

Continue Shopping